
Elias Grünewald, Paul Wille, Frank Pallas, Maria C. Borges, Max-R. Ulbricht

TIRA: An OpenAPI Extension and Toolbox for
GDPR Transparency in RESTful Architectures

Information Systems Engineering
TU Berlin

2021 International Workshop on Privacy Engineering (IWPE‘21)
Co-located with 6th IEEE European Symposium on Security and Privacy

2
Elias Grünewald | TIRA: An OpenAPI Extension and Toolbox for GDPR Transparency in RESTful Architectures | IWPE’21

In a nutshell

Company A

Service
D Service

E

Service
C

Service
A

Service
F

Service
B

Third party

What personal data is collected for which purposes?
How long is it stored?

Which third parties is it transferred to?
…

Processing
of personal data

3
Elias Grünewald | TIRA: An OpenAPI Extension and Toolbox for GDPR Transparency in RESTful Architectures | IWPE’21

Agenda

1. Introduction

2. Background
Privacy and Transparency
APIs, DevOps & RESTful Architectures

3. Requirements & General Approach

4. Transparency-focused OpenAPI Extension (incl. vocabulary)

5. Toolbox for aggregating transparency information (incl. CI/CD integration)

6. Discussion & Conclusion

4
Elias Grünewald | TIRA: An OpenAPI Extension and Toolbox for GDPR Transparency in RESTful Architectures | IWPE’21

Privacy and Transparency

Art. 5(1) GDPR
Personal data shall be
(a) processed lawfully, fairly and in a transparent manner

in relation to the data subject (‘lawfulness, fairness and transparency’);

Art. 12(1) GDPR
The controller shall take appropriate measures to provide any information
[according to Art. 13, 14, 15-22, 34] relating to processing to the data
subject in a concise, transparent, intelligible and easily accessible form

Art. 25 GDPR
Data protection by design and by default

““

5
Elias Grünewald | TIRA: An OpenAPI Extension and Toolbox for GDPR Transparency in RESTful Architectures | IWPE’21

Privacy and Transparency (contd.)
usually done by service developers in a standardized, well-
structured manner directly within the program code or in
accompanying specification files. Besides the functionality
covered by the standard specification, OpenAPI can also
be used for extra functionality through an extension mech-
anism3 that we will employ for specifying transparency
information within a particular service.

3. Requirements & General Approach

From the above givens and their interplay in current,
real world information systems engineering, we can distill
a couple of requirements which shall be laid out in brief
before delineating our general approach to address them.

3.1. Legal Transparency Obligations

As sketched in sec. 2.1, the GDPR codifies numer-
ous transparency obligations throughout Art. 13–15. In
addition, overlapping requirements concerning the mainte-
nance of a record of processing activities are introduced in
Art. 30. These articles therefore define which information
must be provided to the data subject.

Since we aim at collecting transparency information
inside distributed systems comprised of numerous mi-
croservices, we differentiate between two categories of
transparency information here. First, we relate comparably
static information regarding the whole system as well as
the company-wide implementation of GDPR requirements
– such as contact information of a data protection officer
– to the system (SYS) category. Complementarily, we
introduce the service (SVC) category, covering all infor-
mation regarding the collection of data or the processing
thereof by a particular service’s implementation – such
as the disclosure of personal data to specific recipients.
Only this information is subject to the continuous change
introduced by agile DevOps practices and needs to be
determined dynamically by the technical mechanism to
be developed while system-wide transparency information
can be maintained separately (see sec. 5).

An in-depth analysis of GDPR articles regarding trans-
parency and said records-keeping obligations reveals re-
curring patterns of information requirements. For instance,
all examined articles (Art. 13-15 and 30) require the spec-
ification of processing purpose(s), a declaration regarding
the recipients of personal data, or storage periods. Other
aspects such as covered data categories or the origins of
held data only apply in certain settings. All of these are,
however, indispensable for legally sufficient provision of
transparency information and must, therefore, be captured
on a per-service level. Based on our analysis, a summary
of required information is provided in table 1.

3.2. Technical Requirements

While privacy (and, thus, transparency) is typically
considered a non-functional requirement from the per-
spective of modern information systems engineering, we
herein formulate our requirements from the perspective
of the transparency mechanism to be developed. Like for

3. See https://swagger.io/docs/specification/openapi-extensions

TABLE 1. CATEGORIZATION OF TRANSPARENCY INFORMATION
REQUIRED TO BE PROVIDED ACCORDING TO THE GDPR.

GDPR References Summary

System-wide information

13(1a), 14(1a), 30(1a) Controller Contact Information
13(1b), 14(1b), 30(1a) Data Protection Officer Contact Information
13(1f), 14(1f), 15(2), 30(1e) Safeguards for third country transfer ()
13(1c), 14(1c) Legal basis
13(1d), 14(2b) Legitimate interest ()
13(2b), 14(2c), 15(1e) Right to Rectification, Deletion,

and Portability ()
13(2c), 14(2d) Right to consent withdrawal (,)
13(2d), 14(2e), 15(1f) Right to lodge complaint ()
13(2e) Provision mandatory (),

consequences of non-provision
30(1c) Concerned categories of data subjects

Service-level information

13(1e), 14(1e), 15(1c), 30(1d) Recipients
13(1f), 14(1f), 15(1c), 30(1e) Third Country / International Transfer ()
13(1c), 14(1c), 15(1a), 30(1b) Purpose
14(1d), 15(1b), 30(1c) Concerned categories of data
13(2a), 14(2a), 15(1d), 30(1f) Period of storage or

criteria to determine that period (Retention)
14(2f), 15(1g) Source / Origin of data
13(2f), 14(2g), 15(1h) Automated Decision Making / Profiling (),

explanation

Legend: indication only, where applicable, yes/no

other endeavors of privacy engineering aimed at prac-
tically applicable, and re-usable technical mechanisms
(e.g. [3, 23]), requirements regarding the actual provision
of transparency information in RESTful architectures are
thus referred to as “functional” (FR) ones herein while
those referring to other factors that influence, for instance,
practical applicability are categorized as “non-functional”
(NFR).

On the functional side, the technical mechanism to
be proposed must, first and foremost, be capable of ex-
pressing all legally required information (Req. 1, FR). The
expressiveness of our mechanism is therefore explicitly
aligned to the requirements from the GDPR identified
above. In addition, we explicitly aim for a mechanism that
smoothly integrates into above-mentioned, agile DevOps
practices. In line with these, it is the developer of a given
service who knows best what personal data the service
collects, for which purposes, etc. Consequently, we strive
for a service-focused approach (Req. 2, FR) that allows
to harness ”service-local knowledge” from developers in
a bottom-up fashion and to integrate these into a compre-
hensive representation later on. For the latter, in turn, it
must be possible to dynamically integrate and aggegate
respective transparency information across hierarchies of
decoupled and complexly intertwined services into an
overall view (Req. 3, FR). In the light of the dynamically
changing service implementations and interdependencies
that characterize agile DevOps practices, this needs to be
possible in an automated fashion.

Non-functional requirements, in turn, primarily regard
the well-known challenge of ensuring practical applicabil-
ity and fieldability of PETs [24, 25]. In line with other
work directed at comparable goals (esp. [3, 23]), we can at
least identify the following ones: To foster practical adop-
tion, the mechanism to be developed must integrate with
well-established development practices and toolchains as

Company A

Service
A

Service
B

Service
C

6
Elias Grünewald | TIRA: An OpenAPI Extension and Toolbox for GDPR Transparency in RESTful Architectures | IWPE’21

APIs, DevOps & RESTful Architectures

[i]

Service
A

Service
B

{
…
}

Representational State
Transfer (REST)

↗ Agile development practices with short release cycles in diverse teams
↗ Numerous microservices process personal data
😵💫 Traditional privacy policies can only provide static information ➡ new TETs needed

7
Elias Grünewald | TIRA: An OpenAPI Extension and Toolbox for GDPR Transparency in RESTful Architectures | IWPE’21

Requirements

FR
1. Express all legal transparency obligations
2. Service-focused approach (bottom-up)
3. Automated, dynamic, and aggregated perspective (system and services)

NFR
4. Integrate with well-known development practices and toolchains
5. Developer-friendliness, low implementation overhead
6. Re-usable artifact for consistent adoption

8
Elias Grünewald | TIRA: An OpenAPI Extension and Toolbox for GDPR Transparency in RESTful Architectures | IWPE’21

General Approach

9
Elias Grünewald | TIRA: An OpenAPI Extension and Toolbox for GDPR Transparency in RESTful Architectures | IWPE’21

Open API Specifications

https://swagger.io/specification/

10
Elias Grünewald | TIRA: An OpenAPI Extension and Toolbox for GDPR Transparency in RESTful Architectures | IWPE’21

[ii]

11
Elias Grünewald | TIRA: An OpenAPI Extension and Toolbox for GDPR Transparency in RESTful Architectures | IWPE’21

Open API Specifications

https://swagger.io/specification/

Add personal data indicators (PD indicators)

+ 42 utilizer:
43 - name: "MyFitnessPal”
44 non_eu_country: true
45 country: "USA"

12
Elias Grünewald | TIRA: An OpenAPI Extension and Toolbox for GDPR Transparency in RESTful Architectures | IWPE’21

Extending OpenAPI

1⃣ Declare any data field as Personal Data indicator
2⃣ Further annotate each PD indicator
3⃣ Specify transparency properties of a whole service (not shown)

to HTTP request methods. For each operation, in turn, all
entities that make up a request and its response can be
described. These include request bodies, responses, head-
ers, cookies and parameters, whereas OpenAPI consoli-
dates path parameters (e.g. domain. tld /{ user id}), query
parameters (e.g /path?user id=123), headers and cookies
under the Parameter class. All these may possibly specify
the consumption or exposure of personal data and are
therefore candidates for PD indicators.7

4.2. Extending OpenAPI

Having identified the locations where PD indicators
may reside, we introduce a custom extension for OpenAPI
documents. Implementing such an extension is a prereq-
uisite for actually expressing transparency information via
a vocabulary. This vocabulary will be embedded into the
extension and will be covered in detail in sec. 4.3. Our
extension enables developers to:

1 Declare data fields processed by a RESTful service
as personal data indicator as such

2 Further annotate personal data indicators with
transparency information regarding the processing
done by the documented service

3 Annotate properties of the service itself that are
relevant with regards to transparency obligations

OpenAPI extensions can be of all primitive types,
null, an array or an object, allowing for versatile custom
extensions. We will use them to enrich the existing doc-
uments with transparency-related information. Moreover,
in order to allow several extension types and for prevent-
ing overlaps with other arbitrary extensions, we define a
namespace called x-tira. Hereafter, we describe how we
leverage the extension to fulfill the tasks mentioned above.

To 1 declare any data field as personal data indi-

cator using x-tira, it is sufficient to include an x-tira
extension instance of any form inside the corresponding
schema. The recommended way is to set the custom
boolean x-tira to true inside a schema. If a whole schema
is marked this way, no specific PD indicators inside the
given schema would need to be declared. If transparency
information is declared at higher hierarchical levels of the
document, a subordinate schema will automatically inherit
the given property or can possibly override it. Listing 1
exemplifies the declaration of PD indicators in the context
of our application scenario, describing the API endpoint
the fitness devices communicate with.

Alternatively, an x-tira object may also be declared at
the root level of a document. Then, declared transparency
information refers to the whole API endpoint. This may
be useful when, for example, the hosting situation of the
service itself has an influence on transparency obligations
– e.g. when the service is hosted outside of the EU juris-
diction or is provided by a third party (see the two gray-
colored service providers in our application scenario).
Complementary attributes or properties of a schema for
which the declaration shall not apply can be exempted by
invoking x-tira-ignore (see listing 1).

7. For more details see https://github.com/PrivacyEngineering/tira/
blob/main/docs/PD INDICATORS.md

components:
schemas:

Weight:
x− t i r a : true � Declared as PD indicator
t y p e: ” object ”
r e q u i r e d :

- we ig h t
- day

p r o p e r t i e s :
we ig h t:

t y p e: ” number ”
f o r m a t: ” float ”

s u b m i s s i o n:
t y p e: ” string ”
f o r m a t: ” dateTime ”

log − l e v e l :
t y p e: ” string ”
x− t i r a − i g n o r e : true � Excluded from marking (not personal data)

Listing 1. An OpenAPI schema definition of the object Weight which
is marked as PD indicator.

x− t i r a :
r e t e n t i o n t i m e :

days: null
months: null
y e a r s : ��
v o l a t i l e : t r u e
n o l i m i t : t r u e
p e r i o d i c r e v i e w : true
r e v i e w f r e q u e n c y:

days: �
months : n u l l
y e a r s : n u l l

Listing 2. Example of the RetentionTime vocabulary element: A time-
span is defined by setting values for years, months and days. When
storage is volatile or has no explicit limit, this is also configurable.
Whether a review is happening – as imposed by the GDPR – and in
which frequency it is performed can also be defined. This example shows
a storage period of ten years whose compliance is controlled daily.

4.3. Transparency vocabulary

Having established how PD indicators can be declared
as such in an OpenAPI specification, we will now continue
with how 2 further transparency-relevant information

can be expressed in line with requirements from to the
GDPR. For this purpose, we introduce a transparency
vocabulary that is integrated into OpenAPI documents via
the presented x-tira extension. Doing so allows devel-
opers to annotate data processing activities of a given
microservice. By design, the vocabulary closely relates
to the legal requirements from the GDPR, which were
laid out in sec. 3.1 (see Req. 1). The vocabulary repre-
sents all information that realistically can be expressed by
developers (see Reqs. 2 and 5), hence representing their
perspective.

If a schema (see listing 1) is marked as PD indica-
tor, our extension will instantiate a Tira::PersonalDatum
object related to it. Attached to this object can be
instances of Tira::TransparencyProperty which have
a type. Each of these, in turn, represents one vocab-
ulary entity, which is represented by a subclass of
the Tira::TransparencyProperties class. In general,
TransparencyProperties can be attached to a PD indica-
tor in several ways within an OpenAPI document: Either
they are incorporated directly by extending the schema
or they might as well be integrated on a higher level,
e.g. for operations or pathItems, in which personal data is
obtained or passed on. Alternatively, at document level,
3 transparency properties of a whole service are

annotated, e.g. for external services (see Reqs. 2 and 3).
To illustrate how the vocabulary is used in practice, we

recall our application scenario (see sec. 3.3). We might
want to further annotate the API specification of our
PostgreSQL database to show exemplary behaviour. In

to HTTP request methods. For each operation, in turn, all
entities that make up a request and its response can be
described. These include request bodies, responses, head-
ers, cookies and parameters, whereas OpenAPI consoli-
dates path parameters (e.g. domain. tld /{ user id}), query
parameters (e.g /path?user id=123), headers and cookies
under the Parameter class. All these may possibly specify
the consumption or exposure of personal data and are
therefore candidates for PD indicators.7

4.2. Extending OpenAPI

Having identified the locations where PD indicators
may reside, we introduce a custom extension for OpenAPI
documents. Implementing such an extension is a prereq-
uisite for actually expressing transparency information via
a vocabulary. This vocabulary will be embedded into the
extension and will be covered in detail in sec. 4.3. Our
extension enables developers to:

1 Declare data fields processed by a RESTful service
as personal data indicator as such

2 Further annotate personal data indicators with
transparency information regarding the processing
done by the documented service

3 Annotate properties of the service itself that are
relevant with regards to transparency obligations

OpenAPI extensions can be of all primitive types,
null, an array or an object, allowing for versatile custom
extensions. We will use them to enrich the existing doc-
uments with transparency-related information. Moreover,
in order to allow several extension types and for prevent-
ing overlaps with other arbitrary extensions, we define a
namespace called x-tira. Hereafter, we describe how we
leverage the extension to fulfill the tasks mentioned above.

To 1 declare any data field as personal data indi-

cator using x-tira, it is sufficient to include an x-tira
extension instance of any form inside the corresponding
schema. The recommended way is to set the custom
boolean x-tira to true inside a schema. If a whole schema
is marked this way, no specific PD indicators inside the
given schema would need to be declared. If transparency
information is declared at higher hierarchical levels of the
document, a subordinate schema will automatically inherit
the given property or can possibly override it. Listing 1
exemplifies the declaration of PD indicators in the context
of our application scenario, describing the API endpoint
the fitness devices communicate with.

Alternatively, an x-tira object may also be declared at
the root level of a document. Then, declared transparency
information refers to the whole API endpoint. This may
be useful when, for example, the hosting situation of the
service itself has an influence on transparency obligations
– e.g. when the service is hosted outside of the EU juris-
diction or is provided by a third party (see the two gray-
colored service providers in our application scenario).
Complementary attributes or properties of a schema for
which the declaration shall not apply can be exempted by
invoking x-tira-ignore (see listing 1).

7. For more details see https://github.com/PrivacyEngineering/tira/
blob/main/docs/PD INDICATORS.md

components:
schemas:

Weight:
x− t i r a : true � Declared as PD indicator
t y p e: ” object ”
r e q u i r e d :

- we ig h t
- day

p r o p e r t i e s :
we ig h t:

t y p e: ” number ”
f o r m a t: ” float ”

s u b m i s s i o n:
t y p e: ” string ”
f o r m a t: ” dateTime ”

log − l e v e l :
t y p e: ” string ”
x− t i r a − i g n o r e : true � Excluded from marking (not personal data)

Listing 1. An OpenAPI schema definition of the object Weight which
is marked as PD indicator.

x− t i r a :
r e t e n t i o n t i m e :

days: null
months: null
y e a r s : ��
v o l a t i l e : t r u e
n o l i m i t : t r u e
p e r i o d i c r e v i e w : true
r e v i e w f r e q u e n c y:

days: �
months : n u l l
y e a r s : n u l l

Listing 2. Example of the RetentionTime vocabulary element: A time-
span is defined by setting values for years, months and days. When
storage is volatile or has no explicit limit, this is also configurable.
Whether a review is happening – as imposed by the GDPR – and in
which frequency it is performed can also be defined. This example shows
a storage period of ten years whose compliance is controlled daily.

4.3. Transparency vocabulary

Having established how PD indicators can be declared
as such in an OpenAPI specification, we will now continue
with how 2 further transparency-relevant information

can be expressed in line with requirements from to the
GDPR. For this purpose, we introduce a transparency
vocabulary that is integrated into OpenAPI documents via
the presented x-tira extension. Doing so allows devel-
opers to annotate data processing activities of a given
microservice. By design, the vocabulary closely relates
to the legal requirements from the GDPR, which were
laid out in sec. 3.1 (see Req. 1). The vocabulary repre-
sents all information that realistically can be expressed by
developers (see Reqs. 2 and 5), hence representing their
perspective.

If a schema (see listing 1) is marked as PD indica-
tor, our extension will instantiate a Tira::PersonalDatum
object related to it. Attached to this object can be
instances of Tira::TransparencyProperty which have
a type. Each of these, in turn, represents one vocab-
ulary entity, which is represented by a subclass of
the Tira::TransparencyProperties class. In general,
TransparencyProperties can be attached to a PD indica-
tor in several ways within an OpenAPI document: Either
they are incorporated directly by extending the schema
or they might as well be integrated on a higher level,
e.g. for operations or pathItems, in which personal data is
obtained or passed on. Alternatively, at document level,
3 transparency properties of a whole service are

annotated, e.g. for external services (see Reqs. 2 and 3).
To illustrate how the vocabulary is used in practice, we

recall our application scenario (see sec. 3.3). We might
want to further annotate the API specification of our
PostgreSQL database to show exemplary behaviour. In

1⃣ 2⃣

13
Elias Grünewald | TIRA: An OpenAPI Extension and Toolbox for GDPR Transparency in RESTful Architectures | IWPE’21

https://github.com/PrivacyEngineering/tira/blob/main/docs/VOCABULARY.md

Vocabulary

14
Elias Grünewald | TIRA: An OpenAPI Extension and Toolbox for GDPR Transparency in RESTful Architectures | IWPE’21

Managing system-wide transparency

15
Elias Grünewald | TIRA: An OpenAPI Extension and Toolbox for GDPR Transparency in RESTful Architectures | IWPE’21

Introducing TransparencyHub

16
Elias Grünewald | TIRA: An OpenAPI Extension and Toolbox for GDPR Transparency in RESTful Architectures | IWPE’21

Introducing TransparencyHub

17
Elias Grünewald | TIRA: An OpenAPI Extension and Toolbox for GDPR Transparency in RESTful Architectures | IWPE’21

Aggregating transparency information

18
Elias Grünewald | TIRA: An OpenAPI Extension and Toolbox for GDPR Transparency in RESTful Architectures | IWPE’21

Further insights and management

19
Elias Grünewald | TIRA: An OpenAPI Extension and Toolbox for GDPR Transparency in RESTful Architectures | IWPE’21

DevOps / Continuous Integration and Delivery

Service
A

Service
B

{
…

}

Service
C

{ …

}

add service B integration

add Stepcount API description

change third party

20
Elias Grünewald | TIRA: An OpenAPI Extension and Toolbox for GDPR Transparency in RESTful Architectures | IWPE’21

Discussion & Conclusion

First of its kind developer-focused and
GDPR-aligned OpenAPI extension

DevOps-driven approach for transparency

－

Future work includes
other service description formats and service registries,

integration of advanced vocabularies (such as TILT*),
presentation means for data subjects…

* Transparency Information Language and Toolkit (Grünewald and Pallas 2021): https://dl.acm.org/doi/10.1145/3442188.3445925

https://dl.acm.org/doi/10.1145/3442188.3445925

21
Elias Grünewald | TIRA: An OpenAPI Extension and Toolbox for GDPR Transparency in RESTful Architectures | IWPE’21

➡ https://github.com/PrivacyEngineering/tira

Open Source Software (MIT License) – Get involved!

22
TIRA: An OpenAPI Extension and Toolbox for GDPR Transparency in RESTful Architectures | IWPE’21

TIRA: An OpenAPI Extension and Toolbox for
GDPR Transparency in RESTful Architectures

2021 International Workshop on Privacy Engineering (IWPE‘21)

Elias Grünewald
eg@ise.tu-berlin.de
@eliasgruenewald

Dr.-Ing. Frank Pallas
fp@ise.tu-berlin.de
@sallapf

The work behind this paper was partially conducted within the project DaSKITA (https://daskita.github.io), supported under grant no. 28V2307A19 by funds of the Federal Ministry of Justice and Consumer
Protection (BMJV) based on a decision of the Parliament of the Federal Republic of Germany via the Federal Office for Agriculture and Food (BLE) under the innovation support programme.

Paul Wille
pw@ise.tu-berlin.de

Maria C. Borges
mb@ise.tu-berlin.de
@blablablorges

Max-R. Ulbricht
mu@ise.tu-berlin.de
@maroulb

23
TIRA: An OpenAPI Extension and Toolbox for GDPR Transparency in RESTful Architectures | IWPE’21

Sources

See paper for complete bibliography.

[1] Joel R. Reidenberg, Travis Breaux, Lorrie Faith Cranor, Brian French, Amanda Grannis, James T. Graves, Fei Liu, Aleecia McDonald, Thomas
B. Norton, and Rohan Ramanath. 2015. Disagreeable Privacy Policies: Mismatches between Meaning and Users’ Understanding. Berkeley
Technology Law Journal 30, 39.

[2] Elias Grünewald and Frank Pallas. 2021. TILT: A GDPR-Aligned Transparency Information Language and Toolkit. In: Proceedings of the 2021
Conference on Fairness Accountability and Transparency (FAccT’21), ACM, pp. 636-646.

[3] Marit Hansen. Data protection by design and by default à la European General Data Protection Regulation. In: IFIP Summer School on Privacy
and Identity Management. Springer, pp. 27-38.

[4] Seda Gürses and Joris van Hoboken. 2018. Privacy after the Agile Turn. Ser. Cambridge Law Handbooks. Cambridge University Press,
pp. 579-601.

[i] Illustration showing stages in a DevOps toolchain. CC-BY-SA 4.0. Kharnagy. https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg

[ii] OpenAPI/Swagger UI. https://idratherbewriting.com/learnapidoc/pubapis_openapi_tutorial_overview.html

